1 Here are two solids.

Cylinder

radius 4 cm height 10 cm

Hemisphere

radius 6 cm

volume of a hemisphere = $\frac{2}{3} \pi r^3$ where r is the radius

Which solid has the greater volume?

You **must** show your working.

[4 marks]

Volume of a hemisphere:
$$\frac{2}{3} \times 12 \times 6^3$$

Answer

ylinder

2 A quadrilateral PQRS has

PQ = 5 cm

QR perpendicular to PQ

QR = 7 cm

angle $QPS = 135^{\circ}$

PS = 8.5 cm

On the grid, draw the quadrilateral PQRS.

PQ has been drawn for you.

[4 marks]

3 Circle the solid that has six vertices.

[1 mark]

cone

cuboid

triangular prism

square-based pyramid

4

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

A bowl is a hemisphere with radius 12 cm

Water is poured into the bowl at a rate of 325 cm³ per second for 8 seconds.

Does the water fill **more than** 70% of the bowl?

You **must** show your working.

[4 marks]

volume of hemisphere =
$$\frac{1}{21} \times \frac{14^2}{3} \times tc \times 12^3$$

Yes. The water fills 71.8% of the bowl-

5 Circle the solid that has six edges.

[1 mark]

sphere

cube

cylinder

6 ABCDE is a pentagon.

Work out the area of the pentagon.

[3 marks]

Area of trapezium:
$$\frac{1}{2} \times (14+20) \times 11 = 187 \text{ cm}^2$$

Area of triangle: $\frac{1}{2} \times 10 \times 7 = 35 \text{ cm}^2$

Total area: 187 + 35 = 222 cm2 ()

Answer ____ cm²

7 Here is a cone.

7 (a)

Curved surface area of a cone = $\pi r l$ where r is the radius and l is the slant height

Beth tries to work out the curved surface area in terms of $\boldsymbol{\pi}$

Curved surface area of the cone =
$$\pi \times 5 \times 12$$
 = $60\pi\,\text{cm}^2$

What mistake has she made?

[1 mark]

The value of 1 should be 13 instead of 12

7 (h)	Adam uses	$\pi = 3$	to estimate the area of the base of the cone.
, ,	(U)	Adam uses	$\mathcal{M} = \mathcal{S}$	to estimate the area of the base of the cone.

Work out his estimate.

[2 marks]

Area of the base of the cone =
$$12 \times 1^2$$

= 3×5^2
= 3×25
= 75 cm²

75 cm² Answer

Beth uses 7 (c) $\pi = 3.14$ to estimate the area of the **base** of the cone.

> Is Beth's estimate more than or less than Adam's estimate? Tick a box.

> > More than Less than

Give a reason for your answer.

[1 mark]